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A self-similar fractal structure for phase-space attractors is observed for time series produced
by spatiotemporal chaotic systems. Two data sets, produced by (1) coupled logistic maps and (2)
the complex Ginzburg-Landau equation, are studied numerically. The attractor reconstructed in a
time-delay embedding space has a coarse-grained dimension growing exponentially with increasing
resolution. A coarse-grained K> entropy in the region of scaling grows linearly with the embedding
dimension. This type of scaling behavior is expected for developed spatiotemporal chaos in spatially
homogeneous extended systems when the correlation length is much smaller than the system size.
The growth rate of the dimension (differential dimension) is proportional to a density of dimensions
and a correlation length of the system. The growth rate of K> entropy is proportional to the entropy

density and the correlation length.

PACS number(s): 05.45.+b, 47.52.4j, 47.27.Cn

I. INTRODUCTION

Spatially extended chaotic systems are an important
type of deterministic systems with many degrees of free-
dom. There is little hope to develop a general quan-
titative description of multidimensional systems with
the same details as for low-dimensional chaotic systems.
However, the spatial homogeneity of extended systems
provides some additional symmetry and thus some uni-
versal properties of its high-dimensional attractor. There
is numerical and analytical evidence that, as the system
length L tends to infinity, the spectrum of Lyapunov ex-
ponents acquires a universal form, although the number
of positive Lyapunov exponents goes to infinity [1-3].
It follows from this that at least the Lyapunov dimen-
sion Dy, of spatially homogeneous systems is an extensive
quantity and hence the density of dimension pr, = Dz /L
is independent of L. The same property can be expected
for other fractal dimensions. The density of Lyapunov di-
mension has been calculated for several simple model sys-
tems, such as short coupled logistic map lattices [1-3], in
a straightforward manner by evaluating the overall Lya-
punov dimension and dividing it by the system length.
Unfortunately, for a long system the straightforward ap-
proach seems unfeasible and the question of estimating
the density of dimension remains. In situations when
the equations of motion are unknown and one deals with
the data only, the problem of computing Lyapunov ex-
ponents gets even more difficult [4]. Some authors [2,6]
argue that the density of dimension can be found by com-
puting a dimension in an embedding space of vectors y,
constructed using a space-delay embedding from the spa-
tiotemporal data y(z,t),

¥, = {y(z,1),y(z + A,t),
y(:l: + 2A7t)’ () y(d: + (dE - 1)A7t)}‘ (1)
The idea was that for large dg, the dimension grows

asympotically as ppdg. Torcini et al. [3] pointed out
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that this is not strictly correct, since at finite dg one
deals with the projection of a high-dimensional attrac-
tor onto a low-dimensional subspace and generically the
dimension of the projection has to be equal to the em-
bedding dimension. However, a nontrivial scaling rela-
tion between a projection dimension and the embedding
dimension has been recovered [3,5] for the coarse-grained
information dimension

dlnn

~ ppdg, pp <1 (2)
within some finite range of §. Here n is the number of
data vectors and § is the distance between a reference
point and its nearest neighbor in the embedding space
[7]. A reasonable explanation of this fact (see [5]) is that
for dg large enough a piece of length (dg — 1)A evolves
almost as an isolated system with a weak O(d;l/z) con-
tact through a “thermal bath” with the rest of the sys-
tem. Then, for a range of scales much less than the
size of attractor S, and larger than a scale of “exter-

nal noise” S Adg;l/ % one can expect the value of a coarse-
grained dimension to be a constant proportional to dg,
as it happens for isolated map chains, when the dimen-
sion is proportional to the length of the chain (see [1,3]).
The coefficient of proportionality then is presumably a
density of dimension. However, numerically it turns out
that such a scaling appears for a range of embedding di-
mensions starting at about 6 or higher. To estimate pp
Politi and Puccioni [5] employed embedding dimension as
large as 14, which requires an enormous amount of data
and supercomputer power. It shows that for practical
estimations this scaling relation is of little use.

In the present paper we demonstrate that another im-
portant scaling relation exists for spatially homogeneous
systems revealing spatiotemporal chaos. This scaling
is observed in the structure of an attractor in a high-
dimensional embedding space of vectors constructed in
the usual manner from time-delayed values of the field
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variable at one fixed space location

yt = {y(t7 -'l'), y(t + Ta (E),
y(t +27T,z),....,y(t + (dg — 1)T,z)}. (3)

It turns out that the coarse-grained correlation dimension
of the attractor in this space is a linear function of the
logarithm of scale, so the smaller the scale, the greater
the coarse-grained dimension (this growth is saturated,
of course, when D¢ approaches dg). We propose a pos-
sible explanation of this phenomenon of scaling in which
the coefficient of proportionality is related to the density
of dimension and the correlation length of the system.

II. NUMERICAL COMPUTATIONS

In our numerical computations we used two spatiotem-
poral dynamical systems as generators of data: (a) the
coupled-map lattice (CML)

z(n+1,7) = f(z(n, 7))
+D[f(z(n,j — 1)) — 2f(2(n, 7))
+f(z(n,j + 1))] (4)

(b) and the one-dimensional complex Ginzburg-Landau
equation (CGLE)

OiA=eA+ (1+ic)02A4 — (1 —ic3)|A|*A. (5)

For the first model we used a chain of 1000 maps with pe-
riodic boundary and random initial conditions, the logis-
tic function f(y) = 4y(1—y) for local dynamics, and sev-
eral values of coupling D = 0.05,0.2,0.5, —g— For the sec-
ond model (CGLE) we employed a pseudospectral code
[9] with 1024 spectral harmonics and periodic boundary
conditions. The coefficients c;,c3, and ¢ of CGLE (5)
were chosen in order to satisfy the conditions of the de-
fect turbulence (see [10,11]): ¢; = 3.5,¢3 = 0.9, and
€ = 1.0. The physical length of the system was taken to
be L = 500, and the time step both for integration and
the output was 0.1. We generated long streams of accu-
rate data (200 000 points of double-precision numbers in
each) for the values

y(n) = z(n, 500) (6)
for CML and
y(n) = ReA(0.1n, 250.0) (7

for CGLE. Then we reconstructed the phase space via
usual time-delay embedding (3) and computed the cor-
relation integrals of the attractor. We found the value of
time delay T using the mutual information criteria [12],
namely the value corresponding to the first minimum of
the average mutual information

IT=//dd Lyp)in PottT(ULY2) g
(T) Y1dY2p,e+7 (Y1, Y2) Pt(y1)pe+T(y2) ®)

where p,(y) is the probability of having a value y at the
time ¢ and p; :4+7(y1,y2) is the joint probability of find-
ing y; at t and y; at t + T. For CML, the time delay
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was always 1, and for CGLE, T = 2.5. For the computa-
tion of the correlation integral we used the Grassberger-
Procaccia algorithm [13]:

1
(N 2w —1)M

M N
<33 et -yl - y()llw) ,

=1 j=1,[i~j|>W
9)

where the Lo, norm ||x||c means the maximal scalar
component of the vector x and © is the Heaviside func-
tion. N is the total number of data points and M is
the number of reference points, which was usually taken
to be 0.1N. An appropriate choice of W reduces the
spoiling effect of autocorrelations from the correlation
sums as suggested by Theiler [8]. Using the Lo, norm
allowed us to construct a quite efficient numerical code.
Still, to keep a reasonable balance between good statis-

C(r;dg) =

00 — T T =

(a)

2.0

log,,C
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log,r

FIG. 1. (a) Correlation integrals and (b) coarse-grained
correlation dimensions for the coupled-map lattice (4) for
a = 40 and D = % at different embedding dimensions
dg = 2,...,10 for 200000 data points. Solid polygon shows
the range of points taken for the calculation of differential
dimension S and parameter P.
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tics and the computational time, we used intermediate
values of embedding dimension dg = 2,...,10 in all com-
putations (with 200 000 data points and 20 000 reference
points each calculation of a set of correlation integrals
took about 20 h of Sparcstation 2 computer CPU time).

The results of computations are presented in Figs. 1
and 2. Figure 1(a) shows the decimal logarithms of the
correlation integrals log,, C(7; dg) as a function of log, 7
for the data stream generated by CML with D = 2. For
high enough embedding dimensions dg > 5 they have
a form of convex lines which turn out to be parabo-
las over a wide range of scales. That is evident from
Fig. 1(b), where coarse-grained correlation dimensions
Dce = dlog,yC/dlog,,r are shown as functions of
log,q 7 for different dg. As one can see, Dcg grows lin-
early with log,q 7,

Dcg ~ Do — Slogyg7 , (10)

with approximately the same slope S ~ 2.7, indepen-
dently of dg. Remarkably for large enough dg the value
of Dy is itself asymptotically a linear function of embed-
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FIG. 2. The same as Fig. 1 for CGLE (5) with
c1 = 3.5,c3 = 0.9,¢ = 1.0, L = 500, N = 2 x 10°, and
T = 2.0.
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FIG. 3. Differential dimension S as a function of embed-
ding for dimension dg for the coupled-map lattice with differ-
ent diffusion constants and complex Ginzburg-Landau equa-
tion.

ding dimension

with P ~ 0.22. We repeated the computations for other
values of the diffusion coefficient D = 0.5,0.2 with essen-
tially the same result, although the numerical values of
S and P were different. At small D correlation integrals
lose smoothness and acquire a piecewise linear structure
(see Sec. III). Moreover, the same kind of universal be-
havior is clearly seen in Fig. 2 for CGLE. In Figs. 3 and
4 the dependences of S and P on dg are shown for our
numerical models.

To check the sensitivity of our numerical results to the
parameters of computations, we calculated correlation in-
tegrals for CGLE with different lengths of the system
(L = 500, 1000), different numbers of points in the time
series (N = 2 x 10%,10%,5 x 10%,2 x 10*), and different
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FIG. 4. Parameter P (differential K> entropy) as a function
of embedding dimension dg.
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FIG. 5. The same as Fig. 2(b) for CGLE with L = 1000
and with different number of points N = 2 x 10* (all other
parameters are the same).

time delays (T' = 2.0,2.5). A plot of the coarse-grained
dimensions for L = 1000,T = 2.0, and N = 2 x 10% is
shown in the Fig. 5. The scaling behavior clearly per-
sists, however, due to fewer data points as compared to
the case of Fig. 2, and the band of scaling gets somewhat
smaller. Plots of differential dimension S versus dg re-
main close to each other within the 10-15% range (see
Fig. 6). However, one still can notice somewhat lower
values of S for I = 500, which can be cause by finite-size
effects.

For another test, we made analogous computations of
correlation integrals and coarse-grained dimensions for
white noise, uniformly distributed between 0 and 1. The
results of computations are shown in the Fig. 7. As one
can see, there is no scaling region with constant slope of
coarse-grained dimension at all in this case.

30 ————— -

FIG. 6. Differential dimension S as a function of embed-
ding dimension for CGLE (5) 1-N = 2x°, T = 2.0, L = 1000,
2-N = 10°, T = 2.0,L = 1000, 3-N = 5 x 10*, T = 2.5,
L = 1000, 4-N = 2 x 10%, T = 2.0, L = 1000, 5-N = 2 x 10°,
T = 2.0, and L = 500 (the same as in Fig. 3).

log,,r

FIG. 7. The same as Fig. 1(b) for the white noise uniformly
distributed between 0 and 1 for 200000 data points.

These computations demonstrate that the attractor of
our spatiotemporal systems is organized in a universal
manner. As the length of a fractal line grows with in-
creasing resolution, in the present case the dimension
itself grows as we increase the resolution in the phase
space. We wish to call such objects nested strange attrac-
tors to highlight their striking difference from a “normal”
strange attractor with a fixed value of fractal dimension
independent of resolution, on one side, and from purely
random sequences, on the other.

ITII. DISCUSSION

In this section we present a plausible explanation of
the scaling observed in our numerical experiments and
show how it can be applied for the estimation of the den-
sity of dimension. Actually, the relevant arguments have
already been mentioned in the paper by Torcini et al.
[3] while discussing the paper by Mayer-Kress and Kurz
[14]. Indeed, one may assume that for developed spa-
tiotemporal chaos a finite correlation length exists which
in the simplest case determines a rate of exponential de-
cay of the space correlation function:

((y(z,t) — (W)[y(z + X,t) —

Here [, is the correlation length and () means ensemble
averaging. A number of other methods to find correla-
tion lengths in spatiotemporal chaotic systems have also
been devised (see the review [15]). Since we deal with
nonlinear systems, probably a better characterization of
the space correlations is presented by the average mutual
information I(X), which is defined as follows [12]:

@) oc 107X/ (12)

I(X)= I(y(z, 1), y(z + X, )

Pz,zc+X (yl’ y2)
dy1dY2Pe o yy)ln e )
/ / Y1dY2Pz, 2+ x (Y1,Y2) Patx (Y1)Pz(Y2)

(13)

where p,(y1) is the probability of having a value y; at
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location z [similarly for p,4 x(y2)] and pg z+x(y1,y2) is
the joint probability of finding y; at z and y; at z+X. In
spatiotemporal chaotic systems the mutual information
also decays exponentially in space: I(X) ~ 10~%/l, The
correlation length can be estimated as v/Amax, where v
is the velocity of the information transport [2,16] and
Amax is the maximal Lyapunov exponent of the system.
It means that the attractor reconstructed out of the time
series taken at space location zg will have no information
about the dynamics outside the interval [zg — X, zo + X]
when it is coarse grained with the scale rx = 10~ X/l
or larger. More precisely, there should exist a time
series y(xo,t) corresponding to a finite-dimensional at-
tractor of the subsystem of the length X such that
|9(xo,t) — y(zo,t)] < Crx (C is constant). This is a
rather mathematical statement, which we are unable to
prove rigorously, but it seems feasible from the physical
point of view. The finer the resolution, the larger the in-
terval responsible for the attractor structure and there-
fore the larger the dimension one should measure. In-
creasing the phase-space resolution by one order of mag-
nitude effectively lengthens the part of the system con-
tributing to the correlation integral by 2l.. Accordingly,
the coarse-grained correlation dimension would grow by
2ppl.. In general, one can expect the following simple re-
lation between the coarse-grained correlation dimension
and the resolution scale (hypercube size) r:

Dcg = Do — 2pplclogg . (14)

Note that (14) has the same functional form as (10) and
thus S = 2ppl.. Therefore, independent numerical com-
putations of the constant S and the correlation length I,
allow us to estimate the density of dimension pp ~ S/2I..
For a coupled-map lattice with D = % we found [, ~ 4.0
and S = 2.7 (see Fig. 3), therefore pp ~ 0.34. For CGLE
le. =25.0and S > 2.25, so pp > 0.05.
It is well known for low-dimensional strange attractors
[13] that in the limit d — co and » — 0
log,o C(r;dg) = —Dslog,or + K2Tdg, (15)
where D, is the correlation dimension of the attractor
and K> is an entropylike quantity which is a lower bound
for the Kolmogorov-Sinai entropy. In practice we have
only a finite amount of data and only an approximate re-
lation for intermediate scales and embedding dimensions

holds

logm r
logro C(r; dg) = — / Degd(logo ') + KeaTds ,
(16)

where we introduced a coarse-grained K entropy Kcg-
In spatiotemporal chaos not only D, is expected to be an
extensive quantity, but also K, [2]. Then the same argu-
ments lead us to the conjecture that the coarse-grained
K, entropy has to be proportional to log;, 7 and [, i.e.,

log,o C(r;dg) = pplc(logyo r)? — 2pkl.Tdglogyor
—Alog,or + B 17)

or
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Dcg = —2pplclogigr + 2pkl.Tdg + A, (18)
where A and B are some constants. The last formula
explains the linear dependence of Dy on dg and gives us
the opportunity to compute the density of K, entropy
for spatiotemporal systems. For our examples (see Fig.
4) (a) CML pg ~ 0.85 and (b) CGLE pg ~ 0.003.

The scaling of the correlation integral does not neces-
sarily have such a clean form as in these examples. In
general, it can be masked by internal structures due to
inhomogeneity (“lacunarity” [8]) of an attractor and can
appear only after averaging them out. An example of
this type of behavior is presented in Fig. 8 for coupled-
map lattice (5) at small diffusion D = 0.01. In this case
instead of a smooth line we have a piecewise linear cor-
relation integral. The first piece with a slope close to 1.0
corresponds to the one-map dynamics (the impact of all
other maps is not resolved at those scales), the next piece
has a slope close to 3.0, which corresponds to a chain of
three maps, etc. The scaling (14) would be seen only in
an averaged form for much larger amounts of data.

In this paper we considered one-dimensional spatially
extended systems only. If our explanation of the scaling is
correct, one can determine the space dimension observing
just the time series in one space point. Indeed, for two-
dimensional space one can expect a cubic dependence
of the correlation integral on the logarithm of scale, a
quartic scaling for three-dimensional systems, and so on.
However, this conjecture has not been tested numerically
yet.

In conclusion, let us note that the mechanism de-
scribed above forming the self-similar structure of the
nested strange attractor is only a qualitative interpreta-
tion of our numerical findings. In the present work we
have tested only two data sets generated by a coupled-
map lattice and the Gizburg-Landau equation; however,
we believe that the observed scaling is a generic prop-
erty of homogeneous spatiotemporal chaotic dynamics.
In any case, further numerical and theoretical work are
needed to determine the extent of universality of this
phenomenon in various extended chaotic systems.
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FIG. 8. Correlation integrals for CML with D = 0.01 at
embedding dimensions dg = 2, ..., 8 for 200000 data points.
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